Parameterized Complexity of Dynamic Belief
Updates

Thomas Bolander! and Arnaud Lequen?

! DTU Compute, Technical University of Denmark, tobo@dtu.dk
2 Univ Rennes, ENS Rennes, France, arnaud.lequen@ens-rennes.fr

Abstract. Dynamic Belief Update (DBU) is a model checking problem
in Dynamic Epistemic Logic (DEL) concerning the effect of applying a
number of epistemic actions on an initial epistemic model. It can also
be considered as a plan verification problem in epistemic planning. The
problem is known to be PSPACE-hard. To better understand the source
of complexity of the problem, previous research has investigated the com-
plexity of 128 parameterized versions of the problem with parameters
such as number of agents and size of actions. The complexity of many
parameter combinations has been determined, but previous research left
a few combinations as open problems. In this paper, we solve most of the
remaining open problems by proving all of them to be fixed-parameter
intractable. Only two parameter combinations are still left as open prob-
lem for future research.

Keywords: Parameterized Complexity - Model Checking - Dynamic
Epistemic Logic - Plan Verification

1 Introduction

In the fields of psychology, ecology, economy, and various areas of computer
science like automated planning and distributed systems, the need often arises
to model multi-agent systems and reason about the knowledge of the involved
agents. Indeed, situations where multiple human or artificial agents interact with
their environment, and have to update their knowledge accordingly, are ubiqui-
tous. Dynamic Epistemic Logic (DEL) is a well-suited framework to model such
situations, as it is a family of modal logics that allow not only to reason about
(higher-order) knowledge, but also to represent how such knowledge is dynam-
ically updated through the occurrence of events. Unfortunately, many decision
problems associated with DEL are provably hard [T0J6]. Despite that, in real-life
situations humans manage to reason fairly effectively about the knowledge of
themselves and other agents (at least to modest depths of reasoning). Moreover,
certain tasks involving DEL can be carried out fairly easily [10].

In this paper, we study the Dynamic Belief Update (DBU) problem, which
boils down to verifying whether an epistemic formula holds in a model after a
series of epistemic updates, i.e., whether a certain epistemic fact holds after a
sequence of (epistemic) events have occurred in an initial (epistemic) situation.

2 T. Bolander, A. Lequen

The events can also be thought of as actions executed by agents, and hence DBU
can equivalently be thought of as a plan verification problem in an epistemic
setting. We extend the efforts of van de Pol et al. [10] to identify which aspects
of DBU make it intractable. Of the set of sub-problems of DBU identified by
van de Pol et al., we manage to settle the tractability question of most problems
previously left open, leaving only two undecided.

In section [2] we present the DEL framework of this paper, and after recalling
notions of parameterized complexity, we present DBU and its parameters. In
section 3] we prove our new fixed-parameter intractability results of DBU.

2 Background

2.1 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is a modal logic focused on reasoning about
knowledge, which can be revised according to the evolution of the situation [6]. In
this paper, we use a variant of DEL that allows multi-pointed epistemic models
and has propositional postconditions [3]. The language Lk (P, .A) of multi-agent
epistemic logic is defined as follows, where p ranges over a finite set of proposi-
tional variables P, and i over a finite set of agents A:

p=T|pl-elonel| Kip,

The intended meaning of K;p is “agent ¢ knows ¢”. We will often use the ab-
breviated notation Kigp = - K,;—¢, which reads “agent ¢ considers ¢ possible”.
Other symbols such as V and — can be defined by abbreviation as usual. The
semantic of the language is defined through epistemic models (Kripke models).

Definition 1. (Pointed Epistemic Model) A pointed epistemic model for the
language L (P, A) is a pair (M, Wq) where M = (W, R, V) and:

— W is a finite, non-empty set of worlds

— Wy C W is the non-empty set of the designated worlds

R: A= 2V>XW s a function assigning an equivalence relation R; to every

agent i, called the indistinguishability relation for agent i

—V : P = 2% s a valuation function that assigns to every propositional
variable the set of worlds in which it is true

Definition 2. (Truth in a pointed epistemic model) Let (M, W) be a pointed
epistemic model, where M = (W, R, V), and let p € Lk (P, A), andw € W. The
truth conditions for ¢ are the standard propositional ones plus:

(M, {w}) E K;p iff for allw" s.t. Ri(w,w"), (M, {w'}) E¢
(M, Wa) = if forallw e Wy, (M, {w}) F¢

Ezample 1. Figure|l| shows an epistemic model where agent ¢ can not make the
distinction between worlds w; and wy. Thus, it does not know whether p is true
or not, as it holds in the “actual” world wy, but not in wsy. As such, (M, {w;})
K;p, although (M, {w:}) = p. As ¢ is true in both worlds, (M, {w1}) & K;q.

Parameterized Complexity of Dynamic Belief Updates 3

w1 p,q w2 q e1 : (p,q) ez : (Kip, T)
Fig.1: A pointed epistemic model Fig. 2: A pointed event model
(M, {w1}) for Lrx({p,q},{i}) with (&,{e1}) for Lx({p,q},{i}) with
M = (W,R,V), W = {wi,wz}, Ri = E = (E,Q,pre,post), E = {e1, ez},
{(w1,w1), (w1, ws2), (w2, w1), (w2, w2)} and Qi = {(er,e1),(e1,e2),(e2,e1), (e2,e2)},
V(p) = {w1}, V(q) = {w1,ws}. Reflexive pre(e1) = p, pre(e2) = K;p, post(e1) = —q
edges are generally omitted. and post(ez) = T.

Event models, defined next, represent changes to the situation, which lead agents
to update their knowledge.

Definition 3. (Pointed Event Model) A pointed event model for L (P, A) is
a pair (€, Ey) where € is a tuple £ = (E, Q, pre, post), such that

— FE is a non-empty finite set of events

— E4 C E is a non-empty set of designated events

- Q: A — 2FXE js g function assigning an equivalence relation Q; to every
agent i, called the indistinguishability relation for agent i

—pre: E— L (P, A) is a function assigning to each event a precondition

— post: E — Li (P, A) is a function assigning to each event a postcondition,
which is a conjunction of literals (propositional variables and their negations,
including T)

‘When no confusion can arise, we will use the abbreviated notation M for pointed
epistemic models (M, Wy), and similarly for pointed event models. Epistemic
models can be updated with the application of event models through product
updates, defined as follows.

Definition 4. The product update of the (pointed) epistemic model (M, Wy)
with the (pointed) event model (€, Eq) is the (pointed) epistemic model (M, W4)®
(€, Eq) = (M',W)), such that M’ = (W', R', V') and

- W' ={(w,e) e W x E| M,w = pre(e)}

- Rg = {(<w’e)’ (U7f)) e W' x W’ | Ri(wav) and Qz(@f)}

= V'(p) = {(w,e) e W' | M,w |= ptU{(w,e) € W' | post(e) = p})—{(w.e) €
W' | post(e) = —p}

- Wi={(w,e) e W |we W, and e € Eq}

Ezample 2. Figure |2| shows an event model where event e; or ey can occur,
and agent ¢ cannot distinguish which event actually happens. Event e; can only
occur in worlds where p is true, and updates them by making ¢ false. Event
eo can only occur in worlds where agent ¢ knows p, and does not change the
truth value of any variable. If we take the product update (M, {w1}) ® (€,{e1})
of the epistemic model of Figure [T] with the event model of Figure [2] we get a
model containing only a single world satisfying p A =q: the only world satisfying
any of the event preconditions is w; and it only satisfies the precondition of
e1. So only the world-event pair (wj,e;) “survives” the product update, and
the postcondition of e; enforces ¢ to become false (but otherwise preserves the
truth-values from wy).

4 T. Bolander, A. Lequen

2.2 Parameterized Complexity

In this section, we recall some notions of parameterized complexity. Parame-
terized complexity is a branch of complexity theory whose aim is to offer a
finer-grained analysis of a computational problem, taking into account some
characteristics of each instance. It studies parameterized problems, which resem-
ble classical decision problems. Given an alphabet Y| a parameterized problem
L is a subset of X* x N. Given an instance (x, k) of L, we call x the main part
and k the parameter. The parameter k is a metric that gauges one dimension of
x. For instance, if our problem is to model-check formulas of Lk (P,.A), then x
consists of a formula ¢ and a model M, while k can e.g. be the modal depth of
¢ or the number of agents mentioned in ¢ and M.

In classical complexity theory, the class of tractable problems is P. The corre-
sponding class in parameterized complexity theory is the class of fized-parameter
tractable problems, which is denoted FPT. It encompasses all parameterized
problems that can be solved by an fpt-algorithm, defined as follows.

Definition 5. (Fpt-algorithm) Let L be a parameterized problem. An algorithm
A is an fpt-algorithm for problem L if there exists a computable function f :
N — N and a polynomial P, such that the running time of A on any instance
(x,k) € L is at most

f(k) - P(lz)

For instance, the problem SAT is notoriously intractable [5]. However, its pa-
rameterized variant p-SAT, where p is the number of propositional variables, is
fixed-parameter tractable. Indeed, checking all 2P assignments of the p variables
against a formula ¢ can be done in time 2P - P(|g|), for some polynomial P.
Intuitively, this means that a set of instances of SAT, where all formulas have a
number of variables bounded by some constant p, forms a tractable problem.

Proving that a parameterized problem is not fixed-parameter tractable can be
done through fpt-reductions, defined next. They can be seen as the parameterized
complexity counterpart of classical polynomial reductions, and are useful for
proving membership and hardness results for parameterized problems.

Definition 6. (Fpt-reduction) Let L and L’ be two parameterized problems. An
fpt-reduction from L to L’ is a mapping R : L — L’ such that:

— (z,k) e L iff (', k') = R({z,k)) € L.

— R is computable by an fpt-algorithm, i.e., there is a computable function f
and a polynomial P such that R({x, k)) can be computed in time f(k)-P(|z|).

— There exists a polynomial g such that, if (x,k) € L and (z', k") = R((x,k)) €
L', then k' < g(k).

When there exists an fpt-reduction from L to L', we write L <z, L'.

Suppose L <p¢ L'. It follows from the way fpt-reductions are defined that if L’
belongs to some complexity class C, then so does L [§]. Hence, to prove that a
problem L’ is not fixed-parameter tractable, it suffices to find an fpt-reduction

Parameterized Complexity of Dynamic Belief Updates 5

Dynamic Belief Update (DBU)

Input: An epistemic model (M, Wy) on Lk (P, A);
A series of event models (€1, E1), ..., (Eu, Eu) on Lk (P, A);
A goal formula ¢, € Lk (P, A).

Output: Yes if (M, Wy) ® (£1,F1) ® - ® (Eu, Bu) = @4
No otherwise

Fig. 3: The decision problem DBU considered in this paper

to L' from a problem L known to be not fixed-parameter tractable (we call such
problems fized-parameter intractable). In this paper, we consider two complexity
classes that are deemed fixed-parameter intractable, namely W[1] and para-
NP [7]. W[1] is defined as the class of problems that can be fpt-reduced to k-
W2SAT, which is the problem where, given a 2CNF formula ¢ and a parameter
k, one has to decide if there exists a valuation satisfying ¢ in which at most k
variables are true. Para-NP is the class of parameterized problems that can be
solved in polynomial time by a nondeterministic fpt-algorithm. Para-NP-hard
problems are deemed fixed-parameter intractable, as W[1] C para-NP [g].

In the remaining of this paper, we will allow problems to have multiple pa-
rameters. If a problem L has a set of parameters {ki,...,k,}, then its instance
are of the form (x, ki +---+k;,). A problem L with parameters {kq,...,k;,} is of-
ten denoted {ki,...,kp}-L. When adding further parameters to a parametrized
problem, we of course make it more constrained. That is, for any problem L and
parameter sets X and Y, the problem (X UY)-L is at least as constrained as
X-L. Hence the following is easily proved.

Proposition 1. Let X and Y be sets of parameters of a decision problem L.
Then (X UY)-L <g,, X-L.

2.3 Dynamic Belief Update

The decision problem considered in this paper is presented in Figure [3], following
van de Pol et al. [I0]. It is the problem of checking whether a certain epistemic
formula is true after having updated an initial epistemic situation (epistemic
model) with a sequence of epistemic actions (event models)ﬂ So it is about the
complexity of keeping track of “who knows what” when observing a sequence
of actions taking place, where these actions can both change ontic facts and
what the different agents know. Such problems occur e.g. in the coordinated at-
tack problem, the consecutive number puzzle, the muddy children puzzle, board

3 A better name would probably be “Dynamic Knowledge Update” as we are here
only considering models where the underlying accessibility relations are equivalence
relations (i.e., S5). However, since all our results are intractability results, these still
hold if we generalise to arbitrary accessibility relations, including ones representing
beliefs.

6 T. Bolander, A. Lequen

Param. Description Param. Description

a Number of agents o Goal formula’s modal depth
C Max. length of event preconditions p Number of prop. variables

e Max. no. of events per event model u Number of event models

f Length of goal formula

Table 1: Parameters for DBU

Param. for DBU|Complexity Param. for DBU|Complexity
{a,c,f,o,u} W[1]-hard {a,c,e,f,0,p} |para-NP-hard
{a,f,0,p,u} W[1]-hard {c,f,0,p,u} W(1]-hard
{e,u} FPT {a,c,0,p,u} W]1]-hard
Earlier known results [10] New results of this paper

Table 2: Complexity results for the most general parameterized variants of DBU, from which all other
results for our set of parameters can be immediately deduced. Results on the left table originate
from [I0], while results on the right table constitute the original contributions of this paper.

games like Hanabi and Clue and the false-belief tasks studied in cognitive psy-
chology [4J2IT]. We can also think of the problem as the plan verification problem
in epistemic planning [3]: Given an initial state (epistemic model), a sequence of
actions (event models) and a goal formula, does the action sequence achieve the
goal from the initial state?

DBU is PSPACE-complete, as proven by van de Pol et al. [I0]. Their pa-
per proposes various parameters as an attempt to identify the mechanisms that
make DBU hard. Those parameters are given in Table [I} and any combination
of those form a parameterized version of DBU. This leads us to the class of
problems of the form X-DBU, where X is a subset of the 7 parameters. For
instance, {a, c, p}-DBU is the dynamic belief update problem where the param-
eters are the number of agents, the length of the preconditions and the number
of propositional variables. There are 27 = 128 problems of this form. Prior to
our work, the (fixed-parameter) tractability or intractability of 114 of them was
already known [I0]. We show intractability results for an additional 12 prob-
lems, thus leaving only 2 (closely related) problems unsettled. Table [2[summa-
rizes the known results, including the new ones of this paper. It only mentions
the strongest ones, as all other results can be immediately deduced from them
through Proposition [l and the observation that, for any set of parameters X of
DBU, (X U {f})-DBU <j,; (X U{f,0})-DBU (if we constrain the length of the
goal formula, we are also constraining its modal depth).

It can be hard to keep track of 128 different versions of the same problem.
However, many are obviously interdependent in the sense that the (in)tractability
of one immediately implies the (in)tractability of the other, e.g. through Propo-
sition[I] To keep track of dependency and which problems are still open, we devel-
oped a small script, which can be found at https://github.com/arnaudlequen/
dbuproblemfinder. The script allowed us to find the open problems that would

https://github.com/arnaudlequen/dbuproblemfinder
https://github.com/arnaudlequen/dbuproblemfinder

Parameterized Complexity of Dynamic Belief Updates 7

solve most other open problems, and keeping track of the remaining open prob-
lems as we gradually settled more cases.

3 Complexity results

Theorem 1. {a,c e f,0,p}-DBU is fized-parameter intractable (more precisely,
para-NP-hard). In other words, the Dynamic Belief Update problem is intractable
even when restricting the number of propositional variables and agents (p,a), the
mazximum number of events in event models (e), the mazimum length of event
preconditions (c), and the length and modal depth of the goal formula (f,0).

Proof. The proof is by an fpt-reduction from an NP-hard problem to an instance
of {a,c,e,f,0,p}-DBU with fixed values of a, c, e, f, o and p, thus proving para-
NP-hardness of the latter (since the NP-hard problem doesn’t have any parame-
ter, the reduction is also a regular polynomial reduction). The construction used
in the proof is an adaptation of the proof of Theorem 19 of Bolander et al. [3].
The general idea is to simulate, through an instance of DBU, the execution of a
fixed nondeterministic Turing machine M that solves a given NP-hard problem
(any NP-hard problem will do). We begin by encoding the initial configuration
of the machine (i.e., its tape, the position of its head and its internal state) into
the initial epistemic model. Then, we build a series of event model updates, such
that the epistemic model after n product updates contains the representation of
every configuration of M that can be reached in exactly n transitions (compu-
tation steps). Finally, we build a goal formula that checks whether an accepting
configuration was encountered in the process or not. Thus, the DBU instance is
positive if and only if M accepts the word in the input.

Let M = (S,T', qo, 0, ¢f) be any nondeterministic Turing machine that solves
an NP-hard problem in polynomial time, with states S = {qo,¢1,...,qs}, where
qo is the only initial state, ¢y is the only accepting state, I' is the set of tape
symbols including the blank symbol # and § is the transition function [9]. The
DBU instance we build has agents A = {4, j, k, g} and propositional variables
P =T USU{r,r;,t}. Information cells for agent k (i.e., sets Wi, C W of
maximum size that are closed under Ry) are used to encode configurations of
M, and agents i and j are used to distinguish the right and the left of each cell
of the tape that we encode. We will in all epistemic models enforce Ry, = R; UR;
by having R, = R; U R; in the initial model, and @, = Q; U @; in all event
models. We will similarly enforce R, to be the universal relation—i.e., make
any two worlds indistinguishable—by making all pairs of worlds in the initial
model indistinguishable, and by making all pairs of events of all event models
indistinguishable. For simplicity, the R, and R, indistinguishability relations
will not be explicitly drawn. Furthermore, the reflexive and transitive closure of
all indistinguishability relations drawn is implicitly assumed.

A configuration of the machine can be represented by an Instantaneous De-
scription (ID) [9). Following Bolander et al. [3], we represent IDs by epistemic
models as illustrated in Figure [d This pair of information cells for agent & offers

8 T. Bolander, A. Lequen

- —---- i — —j—e —;i—e —] —& --—----) (4l1)
T1 Tn—2 Tn—1 Tn,(Qs,Ti Tn+1 Tn+2 Tm
o - - ---- *——j—e —i— e —j—e — | —@& ------ -* 2)
1 Tn—2 Tn—1 Tny,Qqs,Tj Tn+1 Tn+2 Tm

Fig.4: Two information cells for agent k, both representing the ID x1 -+ - %n_19sZy - - - Ty of the

Turing machine M = (S,T, qo, 0, qf), where z; € I" and g5 € S. This ID represents the configuration
of M where the word on the tape is z; - - - &, where M is in state g5, and the head is at the nth
symbol z, of the word on the tape. Recall that Ry = R; U R; and R; = W x W is implicitly
assumed, where W is the set of all worlds.

Mo = ~—— | — 0 —j—@-————- ' (®
1 ANqo N1 T2 T3 Tm we : t

Fig. 5: The initial epistemic model Mg for the Turing machine M with input word w = 1 - p,.
It consists of the represented ID of the initial configuration of M plus an additional designated
world w; only accessible from the other worlds by the R, relation (recall that Ry = R; U R; and
Ry, =W x W is implicitly assumed).

two unique representations of an ID [3], and we call represented ID an informa-
tion cell for k that has the form of either (4}1) or (42). Each world represents
one cell of the tape of the machine, and is marked with a propositional variable
representing the symbol in the cell. One world is marked with two additional
propositions: one for the current state of the machine (gs), as well as either r;
or r;. This world represents the current position of the head and is called the
current world. The propositions r; and r; are used to distinguish between the
right and the left of the current cell. If r; (resp. r;) is true, then the cell at the
right of the current one is reachable through an i-edge (resp. j-edge).

We proceed to show how to build the initial epistemic model and event
models. Suppose that in its initial configuration, M is in state gy and with
the word w = x1---x,, on its tape. Then the initial epistemic model M is
the represented ID of the initial configuration of M, as shown in Figure [5| In
addition to that, we add a designated world w; only labeled by the prop. variable
t. Its purpose is to make sure the model doesn’t end up being empty, which could
otherwise happen if at some point no transition can be applied to any ID.

The next step consists in building the series of event models, which are all
copies of a single model &;rqns. The aim of Eyrans is to simulate one step of M,
by applying all applicable transitions to each represented ID of the previous
epistemic model. The event model mainly consists in a disjoint union of several
sub-event models, that we call transition components, whose purpose is to at-
tempt to apply a transition of the Turing machine M to a represented ID. For
each transition [, i.e., each element of the transition function §, we construct an
i-transition component Tf and a j-transition component le . We construct these
transition components such that given an ID s and valid transition [for s, ap-
plying 7/’ (resp. 77) to the represented ID of s, of the form 1) (resp. 2)), will
result in the represented ID of the successor of s after [was applied. Applying

Parameterized Complexity of Dynamic Belief Updates 9

J

er: (Kimgs A Ki(gs Az A1i), T)
/3
. €21 {(qs N Tn ATiy—qs A Tp A= AY)
N
@ \-e4:<qs/\anr¢AK¢qs,ﬂqsAﬂanﬂnAqM#/\m
es: (=qs A Ki(qs Ao ATi),qe ATj)

Fig.6: The transition component 'rf, for a transition ! of the form §(¢s,zn) = (qt,y, R), where
Tp F Y.

moer:(gr, T) [m] er: (¢, T)

Fig. 7: Event model o. The purpose of ey is to carry to the updated model any world marked with
qf, as it means that an accepting configuration has been reached. Event e; copies the world wy¢, as
the only designated event.

to an ID s a transition component whose form does not match the represented
ID of s, or whose transition is not applicable to s, will yield no worlds.

Figure [6] shows an example of an i-transition component. The j-transition
component can be obtained by swapping ¢ and j everywhere. Other transitions,
such as 6(gs,zn) = (qt,y, L) or transitions satisfying z, = y, can be handled
similarly. Let us try to explain the intuition behind this construction. It is very
similar to the construction of Bolander et al. [3]. Event e; makes sure that, after
the update, worlds that represent cells of the tape that are unaffected by the
transition are left unchanged. It copies into the updated model every world of
the represented ID, except the world representing the current head position and
the one at its right. Event ey copies the current world, noted w, but removes the
propositional variables that mark the head of the machine. It also updates the
tape symbol. If the cell on the right of the current position of the head is not
blank, then there exists a world w’ on the right of the current world w, i.e., such
that R;(w,w’). Event e3 adds on w’ the propositional variables that make it the
current world of the updated model. It updates as well the current state of the
machine, from ¢, to ¢;. If the cell on the right of the current position of the head
is blank, then no world is on the right of the current world. Event e4 creates it
with a blank symbol, and sets it to be the current world of the updated model.
Applying the i-transition component of Figure [6] to a represented ID s of the
form 2) results in no world. Indeed, in s, the current world is instead labeled
by 7;, and thus, no world verifies r;. Therefore, no event has its precondition
satisfied, as each of the four events ey, ..., e4 has a precondition requiring r; to
hold in at least one world. Similarly, if the transition is not applicable to the
ID represented by s, then the current world of s is labeled by ¢ # ¢s and/or
x), # T, and thus does not satisfy gs; Ax,,. And as before, each of the four events
e1,...,e4 has a precondition requiring gs A x,, to hold in at least one world.

In order to build &4ns, We need to introduce another component o, which
consists of two events, ey and e;. Those events, as depicted in Figure m carry

10 T. Bolander, A. Lequen

to the updated model the information that will eventually allow the goal for-
mula to check whether the instance is positive or not. Building &;qps is then
straightforward. In addition to o, it consists in the disjoint union of the i- and
j-transition components Tf and 77 associated to every transition ! of M. Recall
again that we implicitly assume to also add a g-edge between any pair of events.
Applying Eirans to an epistemic model that contains the representations of all
IDs reachable in n transitions results in a model containing the representations
of all IDs reachable in n + 1 transitions. If the model contained any world where
g was true, then in the updated model, there is also a world where ¢y if true.

By assumption, there exists a polynomial P such that, for any word w’, M
accepts w’ iff M accepts it in at most P(|w’|) steps. Then, for our given input w,
we only need to simulate P(|w]|) steps of M, and thus create a series of P(|w])
product updates of M with the event model E;4ys. In the final model, the only
designated world is wy, which is linked by a g-edge to every other remaining
world. The goal formula K. ¢ must thus be true in the final model iff a world
verifying gy has been reach after some initial sequence of product updates, i.e.,
if M can reach an accepting state in at most P(Jw|) steps. Thus, M accepts
input w iff the instance of DBU with initial state My, with P(|w|) copies of
the event model &4ns and with goal formula Kgqf is positive. We have now
fpt-reduced the problem “Does M accept input w?”, where M is fixed and w is
the input, to the problem {a,c,e,f,o0,p}-DBU. We comply with the conditions
of Definition [} we respectively satisfy the second and third conditions as the
reduction is polynomial, and all parameters of {a, c, e, f, 0, p}-DBU are constants,
by construction. In particular, p and e are constants as they only depend on
M, which is fixed and not part of the input. Finally, as M solves an NP-hard
problem, {a,c, e, f,o0,p}-DBU is para-NP-hard.

Corollary 1. {a,c, p}-DBU, {a,c, p,e}-DBU and {a,c,p, f}-DBU are all fized-
parameter intractable.

The corollary is by Proposition |1} In addition to settling those four open prob-
lems, Theorem I]shows a stronger result, which is that all parameterized versions
of DBU that do not have u as a parameter are fixed-parameter intractable. This
settles in itself the fixed-parameter intractability of 64 problems, out of the 128
total. It also constitutes an alternative proof of the intractability of three different
problems shown separately by van de Pol et al. [10], which are {a,c,e,f, 0}-DBU,
{c,e,f,0,p}-DBU and {a,e,f,0,p}-DBU.

We now prove fixed-parameter intractability of two further problems that
were left open by van de Pol et al. [I0]: {c,f,0,p,u}-DBU and {a,c, p,u}-DBU.
We here show that both are fixed-parameter intractable, which implies the
fixed-parameter intractability of {c,f,p,u}-DBU and {a,c,p}-DBU. Our proofs
of both theorems are adaptations of the fixed-parameter intractability proof of
{c,0,p,u}-DBU by van de Pol et al. [10]. In addition to strengthening their con-
struction to be able to generalize their intractability results, we also simplify
their construction in a few places. The general point is to show W/1]-hardness
by a reduction from the earlier mentioned W[l]-complete problem k-W2SAT:

Parameterized Complexity of Dynamic Belief Updates 11

Given a 2CNF input formula ¢ and a parameter k, decide whether there exists
a valuation satisfying ¢ in which at most k variables are true.

In the following we assume the variables of ¢ are named z1,...,2,,. The
general trick in constructing an fpt-reduction from k-W2SAT to a parameterized
DBU problem is as follows. First we define epistemic (sub)models that can be
used to encode propositional valuations over {x1,..., 2, }. We call these valua-
tion gadgets and use M, to denote the valuation gadget encoding the valuation
v. The initial model of the DBU instance is then the model My where 0 denotes
the valuation with 0(z;) = 0 for all ¢ (the valuation that sets every variable false).
We then construct an event model that can take any set of valuation gadgets
and for each gadget M, it constructs m new gadgets Mz, 51], - - - s Moyjz,im1]
(where v[z — t] is the mapping that is as v except v(x) = t). After updating
k times with this event model, we are guaranteed to have gadgets representing
all valuations where at most k variables are true. If we have no bound on f,
we can now directly use the goal formula of the DBU instance to check that
there exists a gadget making ¢ true. This is what we do for the intractability
proof of {a, c, p,u}-DBU. If we have a bound on f, as in the intractability proof
of {c,f,0,p,u}-DBU, we need to perform product updates with additional event
models that mark the gadgets making ¢ true.

Theorem 2. {c,f,o0,p,u}-DBU is fized-parameter intractable (W/[1]-hard). In
other words, the Dynamic Belief Update problem is intractable even when re-
stricting the number of propositional variables (p), the number of event models
(u), the mazimum length of event preconditions (c), and the length and modal
depth of the goal formula (f,0).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of {c,o,p,u}-DBU by van de Pol et al. [I0] is the construction of
an additional event model (£,) that allow us to only consider a goal formula
of fixed length (while still preserving the fixed bound on the event precondi-
tions). Let ¢ and k be given (an instance of k-W2SAT), where ¢ has variables
var(¢) = {z1,...,zm}. We will now create an instance of DBU that can de-
cide the k-W2SAT instance, i.e., whether there exists a valuation satisfying ¢
and setting at most k variables true. The DBU instance will be using agents
A={1,...,m,a,b}. For each valuation v over var(y), we define the gadget M,
as the star-shaped model with a single root world satisfying proposition r, and
for each x; with v(z;) = 0 it has an outgoing i-edge to a unique world satisfying
no propositions. The construction is illustrated for m = 4 in Figure 8] Now con-
sider the event model & illustrated for m = 4 in Figure [0} The events with no
label are implicitly labelled (T, T), i.e., they are events that preserve any world
to which they are applied. The events labelled (r, T) only apply to the roots of
gadgets. When & is applied to a gadget M,, it creates m copies of the gadget,
where in the first gadget x; is made true (by removing the outgoing 1-edge),
in the second x5 is made true (by removing the outgoing 2-edge), etc. These
gadgets are furthermore connected by a-edges via their root worlds. When this
event model is applied k times to the initial gadget model Mg, we achieve a

12 T. Bolander, A. Lequen

4 1

37 [(n T
'\4 M

N
)
1
()
.

l\

.\4 (r,T)
a

o 3 2
. % o a
JOf ol a

(r,T) 1/.
a
Fig. 8: Left: A valuation gadget for m = 3 2
4 representing the valuation 0 in which e a
all x;, ¢ = 1,...,m, are false. Right:
The gadget for the valuation where x»

and x4 are true (since the outgoing 2-
and 4-edges have been deleted).

Fig.9: The pointed event model £ for
m = 4. The unlabelled events are im-
plicitly labelled (T, T).

model with m* gadgets connected by a-edges via their root worlds. Each gadget
is obtained by starting with the initial gadget representing the valuation 0, and
then making at most k variables true by consecutively removing k edges from
the gadget model. Since we might attempt to remove the same edge multiple
times, this construction gives us a representation of all valuations where at most
k variables are true (except the valuation 0 that can be checked separately).
Hence the final model My ® X contains a gadget for each valuation with at
most k variables set true (except the valuation 0).

Note that a clause (—)z; V (=)x; is true in a valuation v iff the formula
(m)K;r VvV (m)K;r is true at the root of the gadget M,. We now construct an
additional event model &£, as follows. It has a single designated event labelled
(r, T). For each clause (—)z; V (—=)z; of ¢, it has an additional event labelled
(r A =((=)K;r Vv (m)Kjr), f), where f is a new propositional variable denoting
“failure”. All events of &, are connected by b-edges. Each event with postcon-
dition f checks whether a particular clause of ¢ is false in the gadget to which
it is applied. If it is, a b-accessible world satisfying f is created. When &, is
applied to a valuation gadget, it will hence preserve the root (due to the event
(r, T)), and additionally it will add a b-accessible f-world for each unsatisfied
clause. If there are no unsatisfied clauses, it will only preserve the root. Hence,
if we apply &, to the model My ® £ containing gadgets for all the relevant
valuations, the resulting model My ® &% ® &, will contain an r-world with no
b-accessible f-worlds iff ¢ is true in one of the valuations. Hence, we can check
whether ¢ is true in one of the relevant valuations by checking the goal formula
Pg 1= ka(r A Kp—f) in the model My ® £ ® Ep.

To sum up, given a k-W2SAT instance ¢ with parameter k, we reduce it to
the DBU instance with initial model Mg, with k copies of the event model &
followed by the event model £, and with goal formula ¢,. We now only have to
verify that the reduction is an fpt-reduction from k-W2SAT to {c, f, 0, p, u}-DBU.
Building the epistemic model M and the k copies of the event model £ is clearly

Parameterized Complexity of Dynamic Belief Updates 13

polynomial in m and k and hence in the input size of the k-W2SAT instance.
Building &, is polynomial in the formula ¢ and hence also in the input size of
the k-W2SAT instance. Finally, the goal formula has a fixed length. This shows
that the reduction is computable by an fpt-algorithm. We then only need to
show that the parameters of the translated {c,f,o,p,u}-DBU instance can be
bound by a computable function in k. The parameters c,f, 0, p all have a fixed
value independent of the k-W2SAT instance, and u is k 4+ 1. So the parameters
are clearly bound by a computable function in k, and the proof is complete.

Theorem 3. {a,c,o,p, u}-DBU is fized-parameter intractable (W [1]-hard).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of {c, 0, p,u}-DBU by van de Pol et al. [10] is that we show how to
create gadgets that encode the truth value of the different variables via worlds
at different depths of the model rather than via different agents. This is neces-
sary since we have a as a parameter, so we need to put a bound on the number
of agents. When refererring to worlds at different depths of a model, and with
no bound on the depth of a model, we usually also need preconditions of un-
bounded length. But our construction shows that it is possible to still do with
only preconditions of bounded length.

Essentially, the structure of this proof is as the previous, except we need a
different type of gadgets. Let ¢ and k be given with var(yp) = {z1,...,2,}. Let
A = {1,2,a}. For each valuation v, we define the gadget M, as an alternating
1, 2-chain of worlds with a root world satisfying r, and where the world at dis-
tance ¢ from the root makes ¢ true iff v(x;) = 1. The construction is illustrated
for m = 4 in Figure Now consider the event model £ illustrated for m = 4
in Figure As in the previous proof, when this event model is applied to a
gadget M, it creates m copies of the gadget, where in the first gadget =i is
made true (by adding ¢ to the world at distance 1 from the root), in the second
x9 is made true (by adding ¢ to the world at distance 2 from the root), etc. As
before, these gadgets will be connected by a-edges via their root worlds. Also
as before, when this event model is applied k times to the initial gadget model
My, we achieve a model with m* gadgets containing at least one gadget for
each valuation making at most k variables true (again except the valuation 0
that can be treated separately). The only essential difference is that instead of
making use of agents to encode the truth value of the different variables, we use
the depth of the event model. This means we can use a as a parameter in our
reduction (the number of agents is fixed independently of the input).

Let ¢ := Klt, o 1= Klkzt, Pg 1= f(lffgf(lt, etc. Then note that ¢ is true
in the valuation v iff the formula @[t);/x;] is true in the root of the gadget M,,.
Hence, to check whether ¢ is true in a valuation making at most k variables
true, we can check whether the formula ¢, := K,[;/z;] is true in Mo @ EX.
To sum up, given a k-W2SAT instance ¢ with parameter k, we reduce it to
the DBU instance with initial model My, with k copies of the event model £
and with goal formula ¢,. Building Mg and the k copies of £ is polynomial in
m and k, and building ¢4 is polynomial in m and the length of ¢. Hence the

14 T. Bolander, A. Lequen

LN -
2 2
A R o
1 1
? T t u (T, t)/ o
2 2 2 2
\‘<T7 t> ‘
1. 1
! ! L A

b P

2 2 <T7T> E]iaii] <T7T>

+ + ,,1’ 1 .

(15 (ib 2 2.

- n
T r 1 .
- n

Fig. 10: Left: A valuation gadget for 2 (T,8) 2,
m = 4 representing the valuation .(T,t> u
0 in which all x;, ¢ = 1,...,m,
are false. Right: The gadget for the
valuation where xs and x4 are true Fig. 11: The pointed event model £ for m =
(since the worlds in distance 2 and 4. The unlabelled events are implicitly la-
4 from the root have label ¢). belled (T, T).

DBU instance can be computed in polynomial time in the size of the k-W2SAT
instance, and is hence computable by an fpt-algorithm. We then only need to
show that the parameters of the translated {a,c,o,p,u}-DBU instance can be
bound by a computable function in k. This trivially holds, as the parameters a,
c, o, p all have fixed value independent of the k-W2SAT instance, and u is k.

4 Discussion and future work

We managed to solve most of the open tractability problems for the dynamic
belief update problem. In all cases, our results were negative, i.e., we proved
fixed-parameter intractability. When entering the new results into our previously
mentioned tool, we get that tractability of the following parameter combinations
is still open: {a,c,f,p,u} and {a,c,f,0,p, u}. We conjecture that both parameter
combinations are fixed-parameter tractable, but leave it for future work.

The short Turing machine acceptance problem (STMA) is the acceptance
problem of nondeterministic Turing machines with bound k on the number of
computation steps. It is a parameterized problem with parameter k known to be
W]/1]-complete, i.e., fixed-parameter intractable [7]. The proof of Theorem gives
us a construction allowing us to encode an instance of STMA as a DBU instance.
Since the parameter k is the number of computation steps, which translates
into the parameter u in the DBU instance, we can do an fpt-reduction from
STMA to {a,c,f,0,u}-DBU, i.e., we can replace e, p by u in the fixed-parameter
intractability result of Theorem [I} We have to drop the parameters e and p as

Parameterized Complexity of Dynamic Belief Updates 15

their sizes depend on the alphabet of the Turing machine. This reduction then
immediately gives W[1]-hardness of {a,c,f,0,u}-DBU. This result was already
established by van de Pol et al. [10], but with our Turing machine construction
in Theorem |1} we get this additional result essentially for free.

In the proof of Theorem [2| we introduced the trick of checking each clause of
the 2CNF formula with a single event model, hence allowing us to put a bound
on the length of the goal formula. One might be tempted to try out the same
trick in the proof of Theorem [3] however that would blow up the length and
modal depth of the preconditions, since we need a formula of modal depth ¢ to
check whether z; is true in a valuation gadget. If we found a way to preserve
the bound on ¢, we would achieve a proof of the fixed-parameter intractability
of {a,c,f,0,p,u}-DBU. However, as mentioned, we believe this problem to be
tractable.

As future work, we hope to extend our results to epistemic planning, i.e, the
problem of plan synthesis rather than plan verification as considered here, and
we would at the same time consider additional relevant parameters.

References

1. Baral, C., Bolander, T., van Ditmarsch, H., Mcllrath, S.: Epistemic planning
(dagstuhl seminar 17231). In: Dagstuhl Reports. vol. 7. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2017)

2. Bolander, T.: Seeing is believing: Formalising false-belief tasks in dynamic epis-
temic logic. In: Jaakko Hintikka on Knowledge and Game-Theoretical Semantics,
pp. 207-236. Springer (2018)

3. Bolander, T., Andersen, M.: Epistemic planning for single- and multi-agent sys-
tems. Journal of Applied Non-classical Logics - JANCL 21, 9-34 (01 2011).
https://doi.org/10.3166/jancl.21.9-34

4. Bolander, T., Charrier, T., Pinchinat, S., Schwarzentruber, F.: DEL-based epis-
temic planning: Decidability and complexity. Artificial Intelligence (2020, to ap-
pear). https://doi.org/https://doi.org/10.1016/j.artint.2020.103304, http://www.
sciencedirect.com/science/article/pii/S0004370219301146

5. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing. p.
151158. STOC 71, Association for Computing Machinery, New York, NY,
USA (1971). https://doi.org/10.1145/800157.805047, https://doi.org/10.1145/
800157.805047

6. Ditmarsch, H.v., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer
Publishing Company, Incorporated, 1st edn. (2007)

7. Downey, R.G., Fellows, M.R.. Fundamentals of Parameterized Complexity.
Springer Publishing Company, Incorporated (2013)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg (2006)

9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA (2006)

10. van de Pol, I., van Rooij, I., Szymanik, J.: Parameterized complexity of theory of
mind reasoning in dynamic epistemic logic. J of Log Lang and Inf 27, 255-294
(2018). |https://doi.org/https://doi.org/10.1007/s10849-018-9268-4

https://doi.org/10.3166/jancl.21.9-34
https://doi.org/https://doi.org/10.1016/j.artint.2020.103304
http://www.sciencedirect.com/science/article/pii/S0004370219301146
http://www.sciencedirect.com/science/article/pii/S0004370219301146
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/https://doi.org/10.1007/s10849-018-9268-4

	Parameterized Complexity of Dynamic Belief Updates

